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SUMMARY 

Present wind-tunnel f a c i l i t i e s  lack the capability t o  duplicate the 
Reynolds number associated with the hypersonic-cruise vehicle. 
overcoming t h i s  problem, at tent ion i s  being given t o  a r t i f i c i a l  promotion of 
t ransi t ion by means of surface roughness. A t  lower speeds, boundary-layer 
roughness has been used successfully. However, a t  hypersonic speeds, the 
required roughness height i s  so large tha t  the method raises many questions. 
This paper considers these questions and examines the overall  problems associ- 
ated with boundary-layer "trips" t o  produce turbulence a t  hypersonic 
conditions. 

As a means of 

The data indicate that the required roughness heights a re  so large tha t  

For example, an engineer can success- 
whether t r i p s  should be used i n  hypersonic wind-tunnel t e s t s  depends upon the 
particular purpose of any experiment. 
fu l ly  use t r i p s  t o  study the heat t ransfer  associated with an a i rc raf t  compo- 
nent or t o  produce turbulent f l o w  i n  front of an i n l e t  or control that  other- 
wise m i g h t  be t ransi t ional  or laminar. 
cannot be used when an accurate value of the t o t a l  drag of a configuration is  
required because of the large pressure drag associated with the roughness ele- 
ments. With additional study, the drag associated with the roughness elements 
could probably be determined accurately. The vortex shedding that occurs i n  
the lee  side of del ta  wings a t  moderate angles of attack places further l i m i -  
ta t ions on the use of t r i p s  f o r  wind-tunnel simulations of hypersoriic cruise 
vehicles. For any t e s t ,  care must be taken t o  dimension the t r i p s  properly. 

However, a t  the present time, t r i p s  

INTRODUCTION 

Turbulent flow is  known t o  exis t  over most a i r c ra f t  configurations a t  
hypersonic speeds, yet laminar flow exisly over large par ts  of wind-tunnel 
models a t  these speeds. 
sonic range, methods of producing turbulent flow near the leading edge of wind- 
tunnel models are  being studied. A t  lower speeds, boundary-layer roughness 
elements have been used successfully (for example, i n  r e f .  1); however, the 
required roughness height i s  small as compared with the boundary-layer thick- 
ness. 
imately as high as the boundary layer before even the position of t ransi t ion i s  

In  order t o  provide proper simulation i n  the hyper- 

A t  hypersonic Mach numbers, the roughness elements ( t r i p s )  must be approx- 



affected. Small t r i p s  can even delay t ransi t ion.  (See ref. 2.)  Since the 
roughness heights required t o  promote t ransi t ion a t  hypersonic speeds are so 
large, the method raises many questions, such as: "Does a tripped turbulent 
boundary layer behave i n  the same way as a natural  trubulent boundary layer?" 
and "How large i s  the drag associated with the tripping element?" 
sentation these questions and the overall  problems associated with boundary- 
layer t r i p s  a t  hypersonic conditions are discussed. 

In  t h i s  pre- 

SYMBOLS 

CD 

ND 

CF 

C 

d 

k 

L 

M 

NSt 

P 

s, 

Rk 

Rk, c 

RL 

Rx,k 

Drag coefficient of drag, - 
increase in coefficient of 

¶'XIS 

elements 

skin-friction coefficient 

chord (see f ig .  12) 

drag due t o  pressure drag of roughness 

diameter of roughness elements 

ver t ica l  height of roughness above p la te  

length of configuration 

Mach number 

Stanton number 

s t a t i c  pressure 

free-stream dynamic pressure 

Reynolds number based on fluid conditions a t  top of roughness 
elements and height of roughness, - pk'kk 

IJ.k 

Reynolds number based on f lu id  conditions a t  top of roughness 
necessary t o  move turbulent flow close t o  t r i p  position 

Reynolds number based on model length 

Reynolds number based on conditions a t  outer edge of boundary layer 

and distance from leading edge t o  roughness position, PoUoXk 
IJ.0 
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Reynolds number based on conditions a t  outer edge of boundary layer %,tr 
and position where boundary layer becomes turbulent, pouoxt 

PO 
(see f ig .  2) 

Reynolds number based on distance from virtual origin, Rv 
pouo(x - xv> 

PO 

RCO free-stream Reynolds number 

S planform area of configuration 

S l a t e r a l  spacing of center of roughness elements 

U 

t 

X 

velocity component of flow para l le l  t o  surface 

average diameter (thickness) of leading edge 

distance from leading edge or  distance from junction of del ta  wing 
and f l ap  

xk distance from leading edge t o  roughness position 

distance from leading edge t o  position where flow becomes turbulent Xt 

Y 

a 

ver t i ca l  distance measured from pla te  surface 

angle of a t tack 

6 

6f 

boundary-layer thickness based on velocity 

f lap  angle (see f ig .  10) 

boundary-layer thickness on smooth model a t  roughness position 'k 

6* boundary-layer displacement thickness 

P density 

P viscosity 

Subscripts: 

2 loca l  

k conditions a t  top of roughness 

0 loca l  conditions a t  outer edge of boundary layer 



f ree  stream 00 

V virtual origin 

DISCUSSION 

Previous work on boundary-layer t ransi t ion has indicated. that the process 

An example of t h i s  

The sphere 

by which t r i p s  (roughness) produce turbulent f l o w  i s  f o r  the t r i p s  t o  produce 
some type of vortex flow downstream of a tripping element. 
phenomenon i s  shown i n  figure 1. 
patterns taken downstream of a sphere and reported i n  reference 3 .  
was one of many which w e r e  placed on a blunted cone as  i s  i l l u s t r a t ed  i n  the 
top par t  of figure 1. This figure shows tha t  a t  l ea s t  two vortices are  pro- 
duced by each r o u w e s s  sphere. 
and 5 .  
scrubs the surface and produces a high temperature. 
form turbulent flow very similar t o  wake flows. 
and 7.)  How soon they form turbulent flow depends very strongly upon the local  
Reynolds number. 
too low, these vortices w i l l  not be produced. 
hand, i f  the roughness sphere i s  too large, spanwise disturbances result ing 
from these vortices w i l l  pe rs i s t  very f a r  downstream, a s  i s  shown i n  refer- 
ence 3 .  

The lower par t  of the figure shows paint 

Similar resul ts  were reported i n  references 4 
The effects  of these vortices a re  shown as  dark patterns, where the flow 

Vortices dissipate and 
(See, for  example, re fs .  6 

In  fac t ,  i f  the Reynolds number associated with the t r i p  i s  
(See ref .  7.) On the other 

Two methods often used t o  determine when turbulent flow exis ts  a r e  i l l u s -  
t ra ted  i n  figure 2. 
pressure probe. 
causes distortions i n  the boundary layer near the surface. 
l a t t e r  effect  are seen by comparing the data shown fo r  both natural  and tripped 
conditions. To compare several prof i les  and t o  determine where t ransi t ion 
occurred is  d i f f i cu l t  because of these probe distortions.  
of using the location of the maximum pressure from a total-pressure tube t r a -  
versed longitudinally along the model surface t o  locate the beginning of turbu- 
len t  f l o w ,  as  i l l u s t r a t ed  i n  reference 8, has been used successfully. 
method generally used t o  detect t ransi t ion i n  the present investigation is  by 
heat-transfer measurements. An example i s  shown on the left-hand side of f ig -  
ure 2 where the heat-transfer r a t e  i n  terms of Stanton number i s  presented. 
The c i rc les ,  which a re  for  natural  t ransi t ion,  show tha t  turbulent flow occurs 
approximately a t  a Reynolds number of 3.5 x 10 6 . When roughness i s  placed on 
t h i s  model, the beginning of turbulent flow moves from a Reynolds number of 
approximately 3.5 x 10 6 t o  l e s s  than 0.7 x 10 6 . 

One method i s  t o  examine velocity prof i les  obtained with a 
This method i s  very tedious t o  use and the probe apparently 

Examples of t h i s  

However, the method 

The 

The model used t o  detect spanwise distortions ( f ig .  3 )  had three chordwise 
rows of thermocouples placed a t  different spanwise positions behind one rough- 
ness element. The roughness elements on the plate  a re  actually closer together 
than is  indicated i n  the  figure. 
sented i n  figure 3 .  The resul ts  show tha t  when the roughness i s  of proper size, 
i n  t h i s  case k/Bk = 1.9, spanwise distortion of the flow is  very slight. 
beginning of turbulent flow i s  reasonably close t o  the roughness, and the 

Ty-pical data taken with t h i s  model a re  pre- 

The 



experimental heat-transfer measurements are  approximately those calculated by 
the Spalding-Chi method (ref. 9 )  when the v i r tua l  origin i s  assumed t o  be 
located a t  the t r i p .  However, if  k/% is decreased t o  approximately 1.4, 
the spanwise variation behind the roughness element is  considerably increased. 
The f low becomes uniform spanwise a t  approximately 8 inches from the leading 
edge. This position would be chosen as the beginning of turbulent flow and is  
the position ident i f ied as the v i r t u a l  origin f o r  the calculation shown. How- 
ever, i f  the roughness i s  made too high, spanwise distortions appear fo r  the 
ent i re  length of the instrumentation as can be seen when k/& = 5.4. 
trends of the data f o r  t h i s  condition are  no longer similar t o  those calculated 
f o r  turbulent flow. These data are taken a t  conditions where the spanwise dis- 
tor t ions can be minimized by properly sizing the t r i p s .  
where the maximum Reynolds number of wind-tunnel f a c i l i t i e s  i s  limited, span- 
wise distortions may always exis t .  

The 

A t  higher Mach numbers, 

Roughness-Transition Parameters 

The more important roughness-transition parameters are  a s  follows: 

1) Pressure gradient 
2) Wall temperature 
3 )  Spacing 
4) Local Mach number 
5 )  Roughness-position Reynolds number Rx,k 
6) Unit Reynolds number 
7) Ty-pe of roughness 
8) Roughness-height Reynolds number Rk 
9 )  Model configuration 

The pressure gradient and wall temperature are  not included in  the present 
discussion. 
found t o  be c r i t i c a l  a t  supersonic Mach numbers. (However, these elements 
should not be too closely spaced.) Similar trends have been noted a t  Mach 6. 
In  t h i s  investigation the l a t e r a l  spacing between the elements has generally 
been made 4 times the width of  the element (or larger) .  

In  reference 5 the spacing of the roughness elements was not 

In f igure 4, the effect  of varying the last three parameters i n  the fore- 
Bear i n  going l i s t  while the other parameters are kept unchanged is  examined. 

mind tha t  the object i s  t o  find the most effective t r i p  that has the smallest 
drag. 
layer on a f l a t  p la te  is  shown on the l e f t  side of figure 4, where the transi-  
t ion  Reynolds number i s  plotted against the height of the roughness. The var- 
ious types of roughness elements a re  indicated in  the figure. 
roughness element i s  not too important i n  producing transition; however, appar- 
ently an appreciable part  of the area of the element must be located near the 
top. For example the data show that  the pyramidal roughness does not t r i p  the 
f low a s  well as the other types. On the other hand, a pinhead type of rough- 
ness which has i t s  largest  area near the top seems t o  be as  good as ( o r  be t te r  
than) any t r i p  t r ied.  
area of the t r i p  and thus probably reduce the pressure drag associated w i t h  the 

The effect  of using various types of roughness t o  t r i p  the boundary 

The type of' 

The pinhead is  of in te res t  as it would reduce the frontal  



t r i p .  
place on tha t  portion of the element which experiences the lowest pressures; 
furthermore, there i s  a strong poss ib i l i ty  tha t  the flow below the head of the 
pin would become choked, whereby some of the possible benefits would be negated. 

However, the drag reduction i s  limited i n  tha t  the area decrease takes 

On the  right-hand side of .figure 4 the  e f fec ts  of tr ipping the boundary 
layer on a delta wing and a f la t  p la te  are  compared. 
the flow on a de l ta  wing i s  easier t o  t r i p  than t h a t  on a f la t  plate.  

me results indicate that 

The effect  of the roughness-position Reynolds number 
This Reynolds number i s  based on conditions a t  the edge of the boundary layer 
and the distance from the leading edge t o  the  roughness position. 
Reynolds number must be defined f o r  t h i s  discussion. 
i s  the Reynolds number based on conditions a t  the top of the roughness element 
necessary t o  move turbulent flow close t o  the t r i p  position. (Turbulent flow 
is  probably never moved completely to the roughness position.) Most previous 
data were taken a t  positions where k/8k < 1 
number necessary t o  move turbulent flow close t o  the t r i p ,  Rk,c, i s  not a func- 
t ion  of the  roughness-position Reynolds number, Rx,k, i f  Rx,k > lo5 ( re f .  1). 
However, the present data show that a t  a Mach number of 6 ,  Rk,c i s  a function 
of the roughness-position Reynolds number Rx,k. It i s  t rue  tha t  k/% must 
be greater than 1 f o r  the Mach 6 data, whereas previously most of the available 
data were taken under conditions where k/6k < 1. This difference i n  k/6k 

However, the important point i s  may explain why R i s  a function of R, 
t h a t  when k/6k > 1, a plot  of the Reynolds number necessary t o  move t ransi t ion 
close t o  the roughness position must consider 

R,,k 
conditions a re  shown i n  figure 5 .  This f igure includes other data obtained on 
a f la t  p la te  or a cone. The data shown f o r  M~ < 4 and k/ak < 1 are  from 
reference 10 which includes other sources. A l s o  included are  some data a t  
supersonic conditions which have been taken a t  the Ames Research Center fo r  
k/8k > 1. 

Rx,k 

s , k  i s  now examined. 

Another 
This Reynolds number 

and have shown that the Reynolds 

,k' k, c 

pX A t  a Mach number of 6, 
,k* 

has been varied by a factor  of 10, and the values of Rk,c f o r  these 

However, not enough data are available t o  determine the effect  of 
f o r  the Ames Center data. 

Although data a t  Mach numbers greater than 6 are  very limited, indications 
required t o  move turbulent flow close t o  the rough- are tha t  the values of 

ness position become very large and increase rapidly above approximately Mach 6. 
This result is  indicated by the correlation of Potter and Whitfield* from ref-  
erence 11 which is plotted i n  figure 5 and a l so  by some unpublished data taken 
on a f l a t  p la te  a t  a loca l  Mach number of 8 by P. Calvin Stainback a t  the 
Langley Research Center. Stainback's roughness had a value of Rk approxi- 

w a s  not decreased at a l l .  

different  form than tha t  presented i n  figure 5. 

Rk 

mately equal t o  1.7 X 10 4 (Rx,k = 0.19 X lo6) but the position of t ransi t ion 

On the other hand, McCauley (ref 12) presents data 
%e correlation of Potter and Whitfield given i n  reference 11 i s  i n  a 
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a t  a loca l  Mach number of approximately 8.5 where Rk = 1.3 x 104 (%,k = 106) 
and the t ransi t ion Reynolds number w a s  decreased by a factor  of approximately 2. 
(Note tha t  the 
Stainback's data.) The main point t o  be noted i s  tha t  a t  high Mach numbers, i f  
turbulent flow can be moved t o  the roughness position a t  all,  very high rough- 
ness elements must be used. However, the boundary-layer t ransi t ion position 
can be moved forward by using smaller t r ips .  

Rx,k value of McCauley's data w a s  larger than tha t  f o r  

It should be emphasized tha t  i f  R,,k i s  below some limiting value, it is  
extremely d i f f i c u l t  t o  t r i p  the boundary layer. 
Therefore, it i s  not sufficient t o  speak of a t ransi t ion parameter i n  terms of 
only boundary-layer thickness. Another.way of saying the same thing i s  t o  note 
that  i f  the t r i p s  are too close t o  the leading edge, the boundary layer may not 
become turbulent, even fo r  re la t ively large values of 
about the relationship between Rx,k and Rk,c when k/6k > 1 would be help- 
ful. This information might a lso be useful i n  predicting when spanwise distor- 
t ions might be expected. 

(See, f o r  example, ref. 1.) 

k/Ek. More information 

Pressure Drag of Roughness Trips 

The model chosen t o  study the pressure drag of the t r i p s  w a s  the wing-body 
configuration shown i n  figure 6. 
one side of the  model as indicated by the figure. 
f o r  the model with and without roughness elements as obtained from force t e s t s  
i s  shown i n  figure 6. The difference between the drag coefficient f o r  the models 
shown i n  figure 6 i s  due t o  the roughness elements. This difference can be 
divided in to  two parts: the additional skin f r i c t ion  due t o  the forward move- 
ment of t rans i t ion  caused by the roughness elements and the pressure drag asso- 
ciated with the tr ipping elements. The additional skin f r i c t ion  CF i s  shown 
i n  figure 6 and w a s  calculated by the Spalding-Chi method ( re f .  9) .  The posi- 
t i on  of t rans i t ion  w a s  determined from heat-transfer measurements on t h i s  model. 
The remaining CD 
assumed t o  be the pressure drag of the elements. 
have a detached shock and the element drag might be different f o r  a model with 
an attached shock.) 

Sixty-nine cylindrical  rods were placed on 
The drag coefficient CD 

difference f o r  the model with and without roughness i s  
(This model i s  believed t o  

On an actual wind-tunnel model, roughness t r i p s  would probably be placed 
on both sides of the model instead of on only one side as was done i n  t h i s  case. 
Therefore, the pressure drag associated with the roughness elements alone, f o r  
t h i s  body with t r i p s  on both sides would be approximately twice that shown i n  
figure 6 and would be approximately 13 percent of the t o t a l  drag of the body. 
The t r i p  drag f m  a typical  supersonic transport wind-tunnel model w a s  generally 
less than 5 percent of the t o t a l  (ref. 1). 

The methods applied a t  supersonic speeds t o  determine roughness element 
drag (ref. 1) seem t o  be no longer applicable at hypersonic conditions. 
i s  presently being conducted i n  an attempt t o  determine experimentally the t r i p  

Work 



drag d i rec t ly  a t  hypersonic speeds. 
used when an accurate value of the t o t a l  drag of a configuration is  required. 

A t  t h i s  time, however, t r i p s  cannot be 

The size of the roughness necessary t o  move t ransi t ion close t o  the t r i p s  
f o r  the higher Mach numbers becomes very large, a s  i s  indicated by the  over- 
simplified results shown i n  figure 7. The large s izes  can create very large 
spanwise effects  i n  the boundary layer i n  addition t o  the large pressure drag 
&D 
tripping of the flow w i l l  probably be limited t o  those conditions where the 
t ransi t ion distance from the leading edge is  decreased t o  approximately 1/2 o r  
1/4 of tha t  occurring with natural t ransi t ion.  

associated with the  t r i p  elements. For t h i s  reason, at high Mach numbers, 

It also desirable t o  decrease the pressure drag of the t r i p s .  One method 
suggested is  t o  decrease the f ronta l  area of the roughness element by using a 
pinhead ty-pe of roughness. 
discussed. 
use a i r  jets a s  tripping elements, since it i s  d i f f i cu l t  t o  transmit the force 
associated with the column of a i r  t o  the model, but some inherent disadvantages 
a re  associated with using an a i r  j e t  i n  model tes t ing.  Because t h i s  method 
does of fe r  some promise, it appears t o  be worth Further investigation. 
includes some examples of tripping by a i r  jets.) 

The l imitations of t h i s  method have been previously 
One promising method of minimizing the drag of the element i s  t o  

(Ref. 13 

Comparison of the Heat Transfer With and Without Trips 

For the  purpose of investigating whether a natural  turbulent boundary layer 
and a tripped turbulent boundary layer have the same heat t ransfer  (and skin 
f r ic t ion) ,  measurements w e r e  made on a f l a t  plate  and a 20' wedge both with and 
without t r i p s .  The model i s  shown a t  the top of figure 8. The Reynolds number 
on the wedge can be varied both by moving the position of the wedge and by 
placing t r i p s  on the model. 
number i s  plotted against Reynolds number 
v i r t u a l  origin).  Thus, the data can be compared on an equivalent Reynolds num- 
ber basis. The v i r t u a l  origin i s  taken as the experimentally determined begin- 
ning of turbulent f l o w .  
approximately the same both on the plate  and on the wedge. 
seems t o  indicate that if  roughness of the proper size i s  used, a tripped tur- 
bulent boundary layer  gives the same heat t ransfer  as a natural  turbulent bound- 
ary layer. One difference i s  indicated, however, by the o i l  patterns shown i n  
figure 9 which were obtained on the same p la te  but with a 400 wedge. The posi- 
t ion  of the roughness elements and the wedge are  indicated i n  the figure. Ini-  
t i a l l y  dots of o i l  were placed on t h i s  plate.  Downstream of the roughness ele- 
ments on the plate,  no influence of the roughness elements i s  indicated except 
close t o  the elementsj whereas, on the wedge there is  a t race o r  a wake d i rec t ly  
behind each of the roughness spheres. In order t o  determine the effect  of these 
wakes, thermocouples were placed on the wedge a s  i s  indicated by the arrows. 
Only small spanwise differences in  the heating rates  along these various rows 
were found, and the  wakes are  consequently considered t o  be only a secondary 
influence that can be ignored a s  a design factor  fo r  most engineering studies. 
(These spanwise differences, however, might be important i n  fluid-mechanics 

The resu l t s  are given i n  figure 8 where the Stanton 
R, (based on the distance from the 

The data f o r  both the smooth and the rough plate  are  
This comparison 
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studies.) 
have the same heat t ransfer  a s  a natural turbulent boundary layer if  the rough- 
ness elements are  of proper s ize .  

From these data, a tripped turbulent boundary layer i s  concluded t o  

Roughness on Delta Wings 

O i l - f l o w  studies on a del ta  wing w i t h  a natural turbulent boundary layer 
and separation are  now examined. The delta wing with a trailing-edge f l ap  is  
shown i n  figure 10. Also Shawn i n  the figure i s  the approximate position of 
the beginning of f u l l y  turbulent f low as determined by heat-transfer methods. 
Previous studies have shown that whether separation occurs depends strongly 
upon whether the flow is  laminar, transit ional,  o r  turbulent (e.g., refs.  14, 
15, and 16). For example, 
it is observed i n  figure 10 that when the f l ap  i s  at  30°, separation occurs 
along the edges of the model where t ransi t ional  or laminar flow exists,  whereas 
on the center of the wing where the flow i s  turbulent, the flow does not sepa- 
rate.  When the f l ap  angle is  increased t o  40°, separation occurs i n  f ront  of 
the en t i re  f l ap  on the wing. This f l o w  i s  very complex, and the o i l  patterns 
show that there are several vortices existing on the surface of the plate.  
sketch i n  figure 10 indicates a simplified f l o w  model constructed from a study 
of the o i l  patterns. 
i n  the separation region and reattaching onto the flap.  
vortex pattern resul ts  from the fac t  that a t  the ehordwise location of the vor- 
tex, the f l o w  is  turbulent on the center of the wing and is  t ransi t ional  or 
laminar near the edge of the wing. 
produces the vortex f l o w  pattern, which i s  a different  type of t ransi t ional  
separation than that observed i n  two-dimensional flow. 

This result is  also found i n  the present studies. 

The 

Apparently, there i s  a vortex f l o w  l i f t i n g  off the surface 
It is  believed that  the 

The difference i n  the surface shear forces 

Examples of the effects  of placing roughness elements near the leading 
edges of the wing a re  shown i n  figure 11. With the roughness elements on the 
wing an en t i re ly  different type of separated f l o w  occurs than was previously 
observed without roughness. 
tha t  the  roughness t r i p s  the boundary layer ahead of the wing-flap junction and 
thereby provides a turbulent spanwise f l o w  pr ior  t o  separation. 
t h i s  conclusion is  figure l l ( c )  i n  which the same configuration i s  placed a t  a 
5' angle of attack. In t h i s  case, the local  Reynolds number i s  increased and 
a spanwise turbulent boundary layer develops naturally pr ior  t o  separation, so 
tha t  a flow similar t o  that of figure l l ( b )  i s  produced. 

The explanation f o r  t h i s  difference appears t o  be 

Supporting 

A certain amount of outflow from the separated region occurs in  the v ic in i ty  
of the wing-flap juncture. 
using roughness elements i n  separated f l o w  fo r  delta-wing configurations. For 
example, the roughness elements close t o  the edge of the wing i n  the separated 
region would probably change the amount of outflow from the value tha t  would 
be obtained w i t h  natural  turbulent-boundary-layer conditions. Figure 11 also 
suggests that d i f f i cu l ty  wouldbe encountered i n  making tip-control studies 
when turbulent flow i s  produced by t r ips ,  inasmuch as a t  least a short run of 
turbulent flow behind a t r i p  i s  desirable before the f l o w  encounters a control 
surface. 

This phenomenon indicates one of the problems of 

It i s  concluded tha t  t r i p s  can be useful i n  wind-tunnel t e s t s  of 
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del ta  wings i f  consideration i s  given t o  the loca l  flow and the purpose of any 
par t icular  investigation. 

The two oil-flow photographs of the model a t  a = 0' i n  figure 11 show a 
major difference i n  the flow patterns that develop f o r  the turbulent separated 
condition (with roughness) when compared with the t ransi t ional ly  separated con- 
d i t ion  (no roughness). Although the data are not shown, the pressure and heat 
t ransfer  f o r  these two conditions show tha t  forward of the f l ap  junction, only 
minor variations occur. Over the f l a p  portion of the t ransi t ional ly  separated 
model, a lo s s  occurs i n  the integrated pressure leve l  as compared with that 
of the model with roughness, with i t s  more nearly two-dimensional separation. 
A comparison of the experimental data with the two-dimensional calculations pre- 
sented i n  reference 15 shows that  present prediction methods are  useful i n  pre- 
dict ing pressure and heat-transfer magnitudes f o r  del ta  wings with complete 
turbulent separated flow ahead of the flap-wing junction. 
i s  required on delta-wing configurations with t ransi t ional  separation. 

However, more work 

In figures 12 and 13 some resu l t s  obtained on t h i s  w i n g  a t  an angle of 
a t tack a re  given. The o i l  patterns show tha t  the flow i s  again Very complex. 
The flow is  apparently attached t o  the surface near the leading edge of the 
wing but then separates and produces a vortex flow as indicated i n  the sketch 
of figure 13. (See ref. 17 f o r  a somewhat s i m i l a r  type of vortex flow.) The 
vortex flow reattaches near the center l i n e  and then apparently reseparates t o  
produce the feather l i k e  appearance shown i n  f igure 12. This i s  a rather 
shallow type of separated flow, as can be seen by inspecting the o i l  flows with 
the f l ap  a t  30°, where the  flow reattaches t o  the surface very close t o  the 
flap-wing junction. The pressure distributions of figure 13 also indicate t h i s  
shallow type of separation. Another point t o  be noted i s  tha t  the flow fo r  these 
conditions i s  apparently very d i f f i c u l t  t o  t r i p ,  and simulation of naturally 
turbulent conditions may be impossible. Both pressure and heat-transfer mea- 
surements have been made w i t h  various s i z e s  of roughness elements near the 
leading edge. 
by the use of t r i p s .  However, it appears t o  be extremely d i f f icu l t ,  i f  not 
impossible, t o  obtain a simulation of f l i gh t  behavior i n  a wind tunnel by using 
t r i p s  under conditions where the behavior on the lee side shown i n  figure 12 
occurs. 
speeds.) 
ber  conditions with vortex shedding near the leading edge. 
should be mentioned that research a t  lower Mach numbers ( ref .  18) indicates that 
the Reynolds number does a f fec t  the flow associated with vortices.) 
nomenon needs additional study since hypersonic-cruise vehicles w i l l  probably 
encounter flow f i e lds  similar t o  th i s .  

It has not been determined whether t h i s  flow w a s  made turbulent 

( R e f .  18 gives a more detailed discussion of t h i s  problem a t  supersonic 
On the other hand, it may not be necessary t o  duplicate Reynolds num- 

(Nevertheless, it 

T h i s  phe- 

CONCLUDING REMARKS 

Boundary layers. have been made turbulent by roughness elements up t o  loca l  
Mach nunibers of approximately 9 or higher. However, the size of the roughness 
necessary t o  move t rans i t ion  close t o  the t r i p s  f o r  the higher Mach numbers 
becomes very large. The large s i z e  of the  t r i p s  can create very large spanwise 
e f fec ts  i n  the boundary layer and large pressure drags associated with the t r i p  
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elements. 
i t ed  t o  those conditions where the t ransi t ion distance from the leading edge 
w i l l  be decreased t o  approximately 1/2 or 1/4 of that occurring with natural 
t r ans i t  ion. 

For t h i s  reason, at  high Mach numbers tripping w i l l  probably be l i m -  

Whether roughness should be used t o  promote turbulent flow i n  hypersonic 
wind-tunnel tests depends upon the particular purpose of any experiment. For 
example, t r i p s  can be used successfully t o  study the heat transfer associated 
w i t h  an a i r c ra f t  component or t o  produce turbulent flow i n  front of an inlet  or 
control that  might otherwise be t ransi t ional  o r  laminar. However, a t  the pres- 
ent t i m e ,  t r i p s  cannot be used when an accurate value of the t o t a l  drag of a 
configuration i s  required because of the large pressure drag associated with 
the roughness elements. Additional work is  necessary t o  determine the pressure 
drag of the elements w i t h  reasonable accuracy. Another problem f o r  study i s  
the use of t r i p  f o r  wind-tunnel simulations of hypersonic-cruise vehicles when 
vortex shedding occurs on the l ee  side of del ta  w i n g s  a t  moderate angles of 
attack. 
proper size. 

For any test, care must be taken t o  provide roughness elements of 
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PA1 NT PATTERN DOWNSTREAM OF ROUGHNESS ELEMENT 
5" BLUNTED CONEj M,s8; k/SkN22.4 

rROW OF SPHERES 

' ROUGHNESS SPHERE 

Figure 1 L-2865-10 

METHODS FOR DETECTING TRANSITION 
FLAT PLATE; Mm=6 

HEAT TRANSFER VELOCITY PROFILES 

Rx,tr 
0 3.5 x IO6 - NATURAL 

6 
0 <.7X10 -TRIPPED; k18kz3.I 

END 
OF 

x,in. 
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SPANWISE VARIATION OF STANTON NUMBER 
= 6.0, t -c 0.002 in. 

CALCULATIONS 

Figure 3 

VARl AT ION OF ROUGHNESS- INDUCED TRANSITION 
M,=6; R m / f t s 5 x 1 0  6 ;a=Oo;  t<0.002 in. 

VARIOUS ROUGHNESSES ON PLATE; VARIOUS MODEL 
Rx, k= 0.8XIO6 CONFIGURATIONS 

Rx, k 
-0- 70° SHARP WING O.5X1O6 

4F'06 a TRIANGULAR RODS - - SHARP PLATE .8X1O6 

I CYLINDRICAL RODS 
0 SPHERES 

A PYRAMID 
t PINHEAD 

Rx, tr 

-- 
I I I I I L I I I I I 

0 I 2 3 4 5 0 1 2 3 4 5  
k / 8 k  k/Bk 

Figure 4 
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105 

104 
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Figure 5 

PRESSURE DRAG OF ROUGHNESS ELEMENTS 
M,=6; RL= l7.7X1O6; a=O'; k/8k#l.5; d.0.069in.; k=0.03lin.;t=O.O31in. 

ROUGHNESS 
SMOOTH 

II ADDITIONAL CF 
ELEMENT DRAG 

Figure 6 



TRANSITION CLOSE TO ROUGHNESS 
TYPICAL TUNNEL CONDITIONS FOR A PLATE 
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... .. . .. . .. . .: . :. ' 2; -AcD>50% 
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VERY LARGE 
... 

,/.*"' 
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Figure 7 

HEAT TRANSFER w ITH AND w ITHOUT ROUGHNESS 
M,=6;RJfi ~8DXl06; t<OL)02in.; s=0.31in.; 8,=-20° 

WEDGE LoeATlONS 

RV 

Figure 8 



TREAM OF ROW 
M =6; t<0.002in. m 

FLOW- 

ROWS OF THERMOCOUPLES 

Figure 9 L-2865 -3 

TRANSITIONAL SEPARATION ON 70" DELTA WING 
t < 0.002 in. 

TRAILING-EDGE FLAP; NO ROUGHNESS; M,=§.O; w f t = f x  106; azoo; 

Figure 10 L-2865-6 
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OIL PATTERNS ON 7OO-DELTA WING- - 
TRALING-EDGE FLAP; Ma=6.0 ,  8t-40"; RJft 17x106; kr0.047 in 

.. 

-1 

(c) NO ROWGHN 
a=- 5" 

Figure ll L-2865-1 

LEE SIDE OF 70° DELTA WING 
OIL PATTERNS; Ma = 6.0; R d f t  = 6.9 X 106; a =IOo 

Figure 12 L-2865-1l - 221 



LEE SIDE OF 700 DEUA WING 
M,,, = 6.0; R,,,/ft = 6.9X106; Q = IOo 

10 

\ 
I 

I 
P 
pa0 
- 

-*!5 -.4 -.3 -.2 -.I 0 .I .2 
X 
C 
- 

Figure I3 
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